Just a T.A.D. (Traffic Analysis Drone)

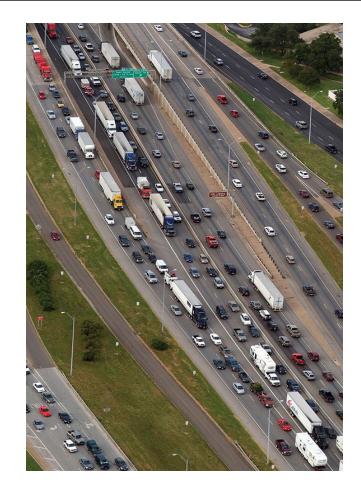
Senior Design Project 2017: Preliminary Design Review

Department of Electrical and Computer Engineering

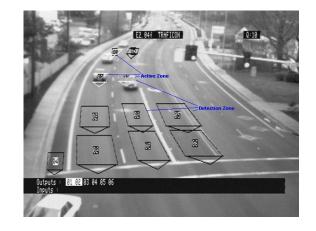
Meet the Team

Cyril Caparanga (CSE)

Alex Dunyak (CSE)


Christopher Barbeau (CSE)
Matthew Shin (CSE)

Problem


- Traffic data needs to be more comprehensive as more and more cars are on the roads
- In addition, data needs to analyzed quickly
 - Detect and track vehicles
 - Develop statistical models and conclusions about traffic density, flow, etc.

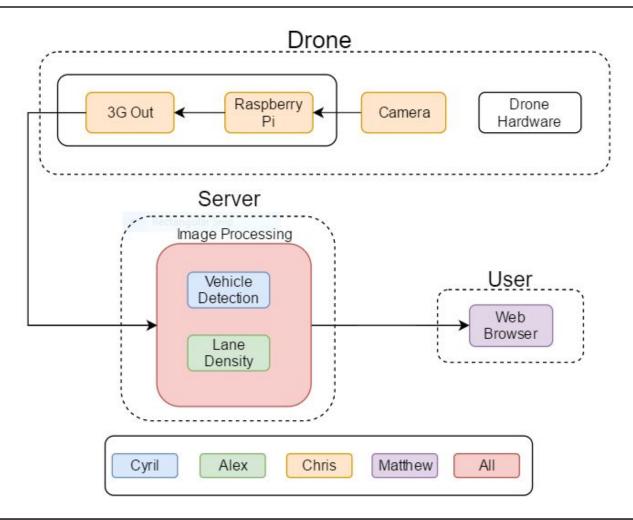
Current Solutions

Floating Car Data (FCD)

- Costly communication
- Requires all drivers to have FCD and all data available on a single platform for analysis
- Privacy concerns
- Video Camera
 - Static placement
 - Limited coverage
 - Limited angle of view
 - Difficult to see behind car

Motivation

- Current traffic data collection methods are expensive and/or insufficient
- Traffic is expected to increase by 50% over the next 16 years
- \$124 billion in direct/indirect losses for Americans in 2013
 - Could rise to \$186 billion by 2030



Source: http://www.forbes.com/sites/federicoguerrini/2014/10/14/traffic-congestion-costs-americans-124-billion-a-year-report-says/#dd89866252b0

Our Approach

- An Unmanned Aerial Vehicle (UAV) can be used to provide aerial image and video
- This data is sent to a server in the cloud for processing and analysis
- Image processing will analyze the image/video for car density and spacing

Block Diagram

Traffic Analysis Concepts

- Space sensor data information provided by aerial sources (UAV)
 - Spacing

$$s_i = x_{i-1} - x_i$$

Density

$$k = \frac{N}{L}$$

Space-mean speed

$$v_s = \frac{1}{N} \sum_{i=1}^{N} \dot{x}_i \dots$$
 in the space domain

Source: Traffic Flow Theory: A Unified Perspective, Ni (2015)

Image Processing Requirements

- Detecting Cars from a top down view
- Counting the amount of cars in the picture
- Distinguishing between different lanes of a highway
 - Determining spacing between cars in each lane

Image Processing Approach

- Background Subtraction
 - Drone takes images as initial "background"
 - Uses recursive averaging to create estimate of background image
- Cropping
 - Remove traffic in opposite direction
 - Remove extraneous roads (ramps) and nonroad components
- Vehicle Detection
 - Use background subtraction as vehicles are only moving objects
 - Vehicles can be better segmented from background through thresholding

Drone - UDI U818A

- Used for preliminary testing
 - Retrieve test images
- Suboptimal for final design
 - 10 min flight time
 - 50g payload capacity
 - 30m flight range

Drone Alternative - 3DR Iris+

- Cost: \$550
- Payload: 0.8lb
- Flight Time: 20 minutes
- Range: 1km
- Programmable Autopilot

Internet Connection

- Take pictures at one second intervals
- Transmit images over 3G to data server

Data Server

- Server receives images from the drone and performs image processing
- Displays data on web page and file for download

Price Estimation - UDI U818A

Drone	\$50
Raspberry Pi	\$35
3G Dongle	\$20
3G Subscription	\$30
Battery (Pi)	\$20
FAA Registration	\$5
Total	\$160

Price Estimation - 3DR Iris+

Drone Camera	\$550 \$50	
Raspberry Pi	\$35	III AN
3G Dongle	\$20	Nº 0 3
3G Subscription	\$30	
Battery (Pi)	\$20	
FAA Registration	\$5	
Total	\$710	

Design Alternatives

- Process images on board and only transmit data
- Collect all data and then return for offline processing
- Collect data and return for WiFi transmission to data server
- Have a GUI for the end user to view data
 - Ex. Google Maps interface
- Calculate space-mean speed of vehicles and determine flow

MDR Deliverables

- Alex/Cyril: Image processing
 - Identifies 80% of visible cars in ideal conditions in sample tests
 - Identifies distances between cars to within one car
 - Has 35 distinct test cases for our image processing software
- Matt: Data server for performing image processing and storing data is set-up
- Chris: Camera and network system can send image data to data server via 3G

Thank You!

Questions?

Department of Electrical and Computer Engineering

SDP17 - **TAD** 19